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The El Niño Southern Oscillation (ENSO) is one of the most promi-
nent interannual climate phenomena. Early and reliable ENSO
forecasting remains a crucial goal, due to its serious implications
for economy, society, and ecosystem. Despite the development of
various dynamical and statistical prediction models in the recent
decades, the “spring predictability barrier” remains a great chal-
lenge for long-lead-time (over 6 mo) forecasting. To overcome this
barrier, here we develop an analysis tool, System Sample Entropy
(SysSampEn), to measure the complexity (disorder) of the system
composed of temperature anomaly time series in the Niño 3.4
region. When applying this tool to several near-surface air tem-
perature and sea surface temperature datasets, we find that in
all datasets a strong positive correlation exists between the mag-
nitude of El Niño and the previous calendar year’s SysSampEn
(complexity). We show that this correlation allows us to fore-
cast the magnitude of an El Niño with a prediction horizon of
1 y and high accuracy (i.e., root-mean-square error = 0.23◦ C for
the average of the individual datasets forecasts). For the 2018 El
Niño event, our method forecasted a weak El Niño with a magni-
tude of 1.11 ± 0.23◦ C. Our framework presented here not only
facilitates long-term forecasting of the El Niño magnitude but can
potentially also be used as a measure for the complexity of other
natural or engineering complex systems.

ENSO | system complexity | entropy | spring barrier | forecasting

The El Niño Southern Oscillation (ENSO), the interannual
fluctuation between anomalous warm and cold conditions in

the tropical Pacific, is one of the most influential coupled ocean–
atmosphere climate phenomena on Earth (1–4). The warm phase
of ENSO (El Niño) is characterized by an abnormal warming of
the eastern equatorial Pacific, which occurs about every 2 to 7 y.
The Oceanic Niño Index (5) (ONI) is the primary indicator that
the National Oceanic and Atmospheric Administration uses to
monitor and identify ENSO events. It is the 3-m running mean of
sea surface temperature (SST) anomalies in the Niño 3.4 region
(5◦ S− 5◦ N, 170◦ W− 120◦ W, shown in Fig. 1 as the region
inside the pink rectangle). An El Niño event is defined to take
place if the ONI is at or above 0.5◦ C for at least 5 consecutive
months (red in Fig. 2A). Here we use the value of the highest peak
of the ONI during an El Niño event to quantify its magnitude.

El Niño has been reported to affect the marine ecosystems,
commercial fisheries, agriculture, and public safety and even to
bring extreme weather conditions to many parts of the globe
(6–14). Thus, the understanding of the underlying mechanism
and prediction of El Niño are of great importance for human-
ity. Numerous models, dynamical as well as statistical ones, were
developed to simulate and forecast El Niño events. Dynamical
models (15–24) express mathematically the physical equations of
the ocean–atmosphere system. In contrast, statistical model (25,
26) forecasts of El Niño are based on data-driven analyses. Dur-
ing the past decades, the prediction of El Niño has made great
progress and skillful forecasts at shorter lead times (up to around
6 mo) are possible (27–29). However, both types of models reveal

very low predictability before and during boreal spring (February
to May). This is the so-called spring predictability barrier (SPB)
(30–33).

Recently, several approaches based on climate networks were
developed to forecast the onsets of El Niño around 1 y in
advance (34–37). One of these approaches (34) has correctly
forecasted all El Niño onsets or their absence since 2012. How-
ever, this method is unable to predict the magnitude of the event.
Predicting the magnitude is crucial since a stronger El Niño
usually causes more extreme events (e.g., floods, droughts, or
severe storms) which have serious consequences for economies,
societies, and ecosystems. In particular, the El Niño events
which started in 1997 and 2014 exhibited relatively high magni-
tudes and had major impacts on the dynamics and structure of
tropical and temperate ecosystems worldwide (38). To fill this
gap, here we develop an analysis tool, System Sample Entropy
(SysSampEn), to quantify the spatiotemporal disorder degree of
temperature variations in the Niño 3.4 region and to forecast
the El Niño magnitude before the SPB. Based on a calendar
year’s data we forecast if in the following year an El Niño will
start or not. Once the SysSampEn approach forecasts the occur-
rence of an El Niño onset, we are able to forecast its magnitude
with high skill (i.e., correlation r = 0.84 and RMSE = 0.23◦ C
between the forecasted and observed magnitudes for the El Niño
events that occurred during the last 35 y). We like to mention
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Fig. 1. The Niño 3.4 region. The red circles indicate the 22 nodes in the Niño
3.4 region with a spatial resolution of 5◦× 5◦. The curves are examples of
the temperature anomaly time series for 3 nodes in the Niño 3.4 region for
one specific year, and several examples of their subsequences are marked
in black.

that the SysSampEn approach roughly doubles the lead time at
comparable skill. The skill of our El Niño magnitude forecast,
based on the previous year’s SysSampEn, and thus with a lead
time of about 1 y, is comparable to the best state-of-the-art model
forecasts which start in June (i.e., with 6-mo lead time) and pre-
dict the same year’s boreal winter (November through January)
ONI (39, 40).

SySampEn
We define the SysSampEn for a complex system as a general-
ization of sample entropy (SampEn) and Cross-SampEn (41).
SampEn was introduced as a modification of approximate entropy
(42, 43). It measures the complexity related to the Kolmogorov
entropy (44), the rate of information production, of a process rep-
resented by single time series. The Cross-SampEn was introduced

to measure the degree of asynchrony or dissimilarity between
2 related time series (41, 45). Both have been widely used in
physiological fields, for example to make early diagnoses before
the clinical signs of neonatal sepsis by analyzing heart rate vari-
ability (46), to implement an automatic diagnosis of epileptic
electroencephalogram (47), and to discriminate different sensory
conditions by analyzing human postural sway data (48).

However, a complex system such as the climate system is
usually composed of several related time series (e.g., curves in
Fig. 1). Therefore, here we introduce the SysSampEn as a mea-
sure of the system complexity, to quantify simultaneously the
mean temporal disorder degree of all of the time series in a
complex system and the asynchrony among them. Specifically,
it approximately equals to the negative natural logarithm of
the conditional probability that 2 subsequences similar (within
a certain tolerance range) for m consecutive data points remain
similar for the next p points, where the subsequences can orig-
inate from either the same or different time series (e.g., black
curves in Fig. 1), that is,

SysSampEn(m, p, leff , γ) =−log(
A

B
), [1]

where A is the number of pairs of similar subsequences of length
m + p, B is the number of pairs of similar subsequences of length
m , leff ≤ l is the number of data points used in the calculation for
each time series of length l , and γ is a constant which determines
the tolerance range. The detailed definition of SysSampEn for an
arbitrary complex system composed of N time series is described
in Data and Methods. When N = 1, p = 1, and leff = l , our defi-
nition is equivalent to the classical SampEn (41). As is the case
for SampEn and Cross-SampEn, before the SysSampEn can be
used as an effective tool, appropriate parameter values have to
be identified since only certain value combinations can be used
to estimate a system’s complexity with considerable accuracy.

A

B C

Fig. 2. Correlation between SysSampEn and El Niño magnitude. (A) The heights of the blue rectangles indicate the values of the SysSampEn (left scale)
for the calendar years preceding El Niño events, calculated from ERA-Interim, by using the set of parameters (m= 60 d, p = 15 day, leff = 345 d, and γ= 9)
that correspond to the highest correlation r with El Niño magnitudes. The red curve is the ONI and the red shades indicate El Niño periods (right scale).
(B) Scatter plot of the maximal El Niño magnitude versus previous calendar year’s SysSampEn (blue rectangles in A). The gray region indicates values of the
SysSampEn, which predict for the maximal ONI less than 0.5◦ C and thus by definition non-El Niño events. The green dashed line shows the best least-square
fitted line. (C) The y coordinate of each purple dot is the averaged correlation r for parameter combinations with accuracy no less than a certain level
(i.e., its x coordinate) in both the spatial asynchrony and the temporal disorder tests. The correlation r between SysSampEn and the El Niño magnitude
is monotonously increasing with increasing accuracy level. The calculation of the accuracy level is independent of any El Niño events, and thus the strong
correlation between the SysSampEn and the El Niño magnitudes emerges naturally without fitting.
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To better demonstrate the mathematical meaning of our
SysSampEn, we show in SI Appendix, Fig. S1 an example (the
logistic map) of applying the SysSampEn to estimate the sys-
tem complexity and compare it with the Lyapunov exponents.
We find that higher (lower) values of the SysSampEn are
strongly associated with higher (lower) Lyapunov exponents,
which reveals that the SysSampEn can well capture the complex-
ity of the system. However, we note that the effective parameter
combinations may be different in different complex systems.
Here for the climate system we study for El Niño prediction, we
choose m to be 30 d or 60 d and p to be 15 d or 30 d since El
Niño is an interannual phenomenon.

Strong Positive Correlation between the El Niño Magnitude
and Its Previous Calendar Year’s SysSampEn.
We calculate the SysSampEn of the climate system composed of
the near-surface air or SST anomaly time series in the Niño 3.4
region and find a strong positive correlation between El Niño
magnitude and the SysSampEn of its previous calendar year
(Fig. 2 A and B). This positive correlation is significant (r =
0.90 on average) and robust across all of the analyzed datasets
[ERA-Interim 1,000 hPa air temperature (49) (ERA-Interim),
ERA5 1,000 hPa air temparature (50) (ERA5), ERA5 SST, and
JRA55-do SST (51)] (SI Appendix, Fig. S2).

In the following, we present our results based on the dataset
of ERA-Interim, which gives the highest correlation. For a given
calendar year between 1984 and 2018, we construct a system
composed of temperature anomaly time series in the Niño 3.4
region (Fig. 1) with a spatial resolution of 5◦× 5◦.

First, we determine the parameter combinations for the
SysSampEn, which enable an accurate estimation of the system’s
complexity. We do this by performing 2 tests (for details see Data
and Methods), which determine, for a given parameter combina-
tion, the ability of the SysSampEn to discriminate between higher
and lower disordered systems. In the temporal disorder test, we
add random numbers to the real temperature data, while in the
spatial asynchrony test we compare 2 systems, one which is con-
structed from neighboring points on the globe and one which is
constructed from randomly chosen points on the globe. An accu-
rate complexity measure should be able to recognize the higher
disorder in the more random system and thus assign a higher
SysSampEn value to it. We define accuracy as the percentage
of correct assignments. Thus, using suitable parameter combina-
tions for the SysSampEn we can quantify the temporal as well as
the spatial disorder in the system.

Surprisingly, we find that the previous calendar year’s
SysSampEn exhibits a strong positive correlation with the mag-
nitude of El Niño, if the parameter combination for the Sys-
SampEn can quantify the system complexity with good accuracy.
Fig. 2C demonstrates in one example, m = 60 d and p = 15 d,
that with changing the values of leff and γ in Eq. 1 the Pearson
correlation (r) between the El Niño magnitude and the previ-
ous calendar year’s SysSampEn (e.g., blue rectangles in Fig. 2A)
increases significantly with the accuracy level. Note that the
accuracies are calculated fully independently of any El Niño

magnitude analyses or forecasts. Thus, the strong correlation
between the SysSampEn and the El Niño magnitude is natu-
rally obtained from the parameter combinations, which enable
the SysSampEn to quantify the system complexity with high
accuracy. In other words, the high predictability of the El Niño
magnitude before the SPB is not the result of overfitting but it
originates from the strong and robust correlation between system
complexity and El Niño magnitude.

We also find that the pattern of the SysSampEn between
1984 and 2018 is independent of the data resolution and highly
consistent for different parameter combinations which provide
high accuracy (SI Appendix, Fig. S3 and Table S1). In par-
ticular, the correlation between the El Niño magnitude and
the previous calendar year’s SysSampEn with different effec-
tive (≥ 95% accuracy level) parameters are all significantly
high (the average r is 0.83± 0.12), while the best correlation
r = 0.99 is obtained for m = 60 d, p = 15 d, leff = 345 d, and
γ= 9 (Fig. 2B).

We performed the same analysis on the other datasets and
obtain similar results (SI Appendix, Figs. S4–S6). We also present
in SI Appendix, Fig. S2 the scatter plots of the El Niño magni-
tude versus the previous calendar year’s SysSampEn that give
the highest r for each of the other 3 datasets. The correla-
tion r is also significantly high for the other 3 datasets, and the
average r when using all high-accuracy parameter combinations
of the 4 datasets (SI Appendix, Table S1) is 0.79± 0.11. Note
that the 2009 El Niño is the only event missed in the onset
forecasts (discussed below) and is an exception in the linear
relationship.

To obtain the best forecasting performance, we choose the
SysSampEn parameters by first conducting an accuracy test and
only accepting parameter combinations which lead to a high
accuracy (accuracy level ≥ 95% for air temperature and ≥ 85%
for SST) in both the spatial asynchrony and the temporal dis-
order tests. From these high-accuracy parameter combinations
we choose in the second step the one which gives the highest
correlation r with the magnitudes of the past El Niño events.
We repeat this for all datasets. Table 1 shows the parameters
that suggest the highest r for El Niño events before 2018 in the
different datasets.

We would like to note that, by repeating our calculation to
the average SampEn per node or the average Cross-SampEn for
each pair of nodes in the Niño 3.4 region, we get less signifi-
cant correlations (r = 0.42 on average) than in the SysSampEn
approach.

Forecasts of El Niño Magnitudes and Onsets.
Based on the substantial correlations between SysSampEn and
El Niño magnitude, we develop efficient hindcasting and fore-
casting methods for both the El Niño onsets and magnitudes
(introduced in Data and Methods).

To show the high predictability of the El Niño onset before
the SPB, we compose a new index (rectangles in Fig. 3A)
by substituting the value of the SysSampEn for each calendar
year into the best-fitting linear functions (green dashed lines

Table 1. Values of parameters that suggest the highest correlation between El Niño magnitude
and its previous calendar year’s SysSampEn during the period between 1984 and 2017

Data Parameter r 2018, ◦C

Type Name Resolution m, d p(=q), d γ leff , d

T 1,000 hPa ERA-Interim 5◦ 60 15 9 345 0.99 1.67
ERA5 5◦ 30 30 8 330 0.87 0.58

SST ERA5 5◦ 30 30 5 330 0.86 1.09
JRA-do 4◦ 30 30 5 360 0.87 1.09

Average 0.90 1.11
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B C

Fig. 3. Forecasting El Niño onsets and magnitudes. (A) The value of onset forecasting index (average forecast over the 4 datasets) is shown as the height of
rectangles and is used to forecast the occurrence or absence of an El Niño onset in the following year. If the index value is≥ 0.5◦ C and the observed ONI in
December is below 0.5◦ C, we forecast the onset of an El Niño in the following year. The blue rectangles show the correctly forecasted El Niño onsets, the
pink rectangle indicates a missed El Niño event, the gray rectangles indicate false alarms, and the transparent rectangles show when the absence of an El
Niño onset was correctly forecasted. (B) Observed temperature versus the leave-one-out hindcasted temperature for the El Niño magnitudes (orange dots)
before 2018. The obtained RMSE is 0.23◦ C. The forecasted magnitude (1.11◦ C) of the 2018 El Niño event is plotted as a light green dot with an error bar of
1× RMSE. The + symbols indicate the hindcasted (forecasted) values obtained by using each of the 4 datasets. (C) Forecasts of the 2004, 2006, and 2014 El
Niño magnitudes based only on past information. The error bar for each forecasted El Niño event (blue points) equals 1× RMSE (i.e., 0.37◦ C, 0.31◦ C, and
0.28◦ C for the 2004, 2006, and 2014 events, respectively) and is calculated from the leave-one-out hindcasts which lie in the regarded events past. Thus,
the forecasted value, as well as its error bar (i.e., 1× RMSE), are only based on the event’s past information. The red dots show the observed magnitudes
and are within the error bars. The forecasted 2018 magnitude and its error bar are shown in light green.

in Fig. 2B and SI Appendix, Fig. S2) and then taking the aver-
age over all of the 4 datasets. Thus the new index has the unit
of degrees Celsius. We find that the value of this index for
one specific calendar year can be used to forecast the pres-
ence or absence of an El Niño onset in the following year
with very good accuracy, that is, 9 out of 10 correct fore-
casts of El Niño onsets (dark blue rectangles), with only one
missed (pink rectangle) and 21 out of 24 correct forecasts of
El Niño onset absence years (transparent rectangles), with 3
missed (gray rectangles). The detailed algorithm is introduced in
Data and Methods.

To demonstrate the high predictability of the El Niño mag-
nitudes before the SPB, we first perform leave-one-out hind-
casts (described in Data and Methods) of the magnitudes for
all of the El Niño events between 1984 and 2017. For each
dataset, we use the parameter combination in the function of
SysSampEn that gives the highest correlation r between
SysSampEn and the magnitudes of the El Niño events before
2018 (Table 1). The observed El Niño magnitudes and hind-
casted magnitudes are shown in Fig. 3B. Compared to the real
data, we find that our hindcasting method is quite efficient
with considerable accuracy, that is, the root-mean-square error
(RMSE) = 0.23◦ C. This indicates that the SysSampEn method
has the potential for skillful El Niño magnitudes forecasts with a
prediction horizon of 1 y.

Second, we perform magnitude forecasts for the 2004, 2006,
and 2014 El Niño events by using only data from the event’s past
(Data and Methods) and find that the differences between the
observed and forecasted values are within 1×RMSE (Fig. 3C).
These results indicate that 1×RMSE can be regarded as an
error bar. The RMSE is obtained by leave-one-out hindcasting

applied only to the regarded event’s past (e.g., for the 2004
El Niño it depends only on the period 1984 through 2003).
Analogously, the SysSampEn parameters also depend only
on the regarded event’s past and are given in SI Appendix,
Tables S2–S4. Note that for later El Niño events, as more
data become available for our method the estimated RMSEs
become smaller (Fig. 3C). The forecast performance for the
last 3 El Niño events demonstrates the ability of our method to
forecast El Niño magnitude as well as providing correct error
estimates.

Next, we apply the SysSampEn method to forecast the magni-
tude of the 2018 El Niño event, based only on data up to 2017.
The used SysSampEn parameters are given in Table 1 and obtain
for its magnitude 1.11◦ C, with an error bar of 0.23◦ C.

Discussion
We have introduced the SysSampEn for complex systems and
applied it to estimate the spatiotemporal disorder degree of
temperature variations in the Niño 3.4 region. We find that a
low degree of horizontal synchronization and a high degree of
random temporal variations in the SST or the near-surface air
temperature are precursors for a strong El Niño. Our results
reveal a high predictability of both the El Niño onsets and mag-
nitudes already before the boreal spring of the El Niño onset
year. Between 1984 and 2018 our method correctly predicted 9
out of 10 El Niño onsets, while the absence of an El Niño onset
was correctly predicted in 21 out of 24 cases. For the magnitude
of the correctly predicted El Niño we obtain a forecast RMSE
of 0.23◦ C. In particular, for the last El Niño that started in
2018 our method predicts a weak El Niño with a magnitude of
1.11± 0.23◦ C, based only on data until the calendar year 2017.
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We note that for shorter leff close to half a year the corre-
lations between El Niño magnitudes and SysSampEn are still
high for certain ranges of parameters (SI Appendix, Figs. S3–
S6 C). This indicates that even earlier El Niño forecasts
up to 18 mo in advance could be achieved, but with lower
prediction skill.

As a possible mechanism underlying our method, we find some
clues from the relationship between the near-surface ocean tur-
bulence and the SST variations (52). Recently, it was discovered
that a strong El Niño is related to intense ocean turbulence,
which is characterized by large lateral diffusivity (53–55). An
enhanced lateral diffusivity during an El Niño leads to weaker
horizontal temperature gradients and higher horizontal mixing,
which in turn results in a lower SysSampEn in the Niño 3.4
region. This conjecture is supported by our finding that the
SysSampEn for El Niño years is inversely proportional to the El
Niño magnitude, that is, for calendar years which include a strong
El Niño, the SysSampEn tends to be lower (for details see SI
Appendix, Fig. S7). Additionally, we also observe a memory effect
in the dynamical evolution of the SysSampEn, that is, a smaller
SysSampEn is more likely to be followed by a larger one and
a larger one to be followed by a smaller one, as demonstrated
in SI Appendix, Fig. S8. Thus a calendar year with a strong El
Niño and thus lower SysSampEn is likely to be preceded by a
calendar year with higher SysSampEn. We hypothesize that this
higher SysSampEn might be caused by a weak surface lateral dif-
fusivity during the calendar year before an El Niño onset, but
further analyses based on climate models and observation data
are needed. We note that the diffusivity of the ocean surface
mesoscale turbulence in certain regions has just been found to
be correlated with the Niño 3.4 index (55), which supports our
hypothesis. We also notice that the percolation phase transition
analysis was developed to study the influence of ENSO on cli-
mate and further help us in better predicting the subsequent
events triggered by ENSO (56, 57).

The theoretical framework developed here not only improves
the long-lead-time El Niño forecasting capability but could lead
to improved forecasts or new insights when applied to other
nonlinear and complex dynamical systems (58, 59).

Data and Methods
Data. The ERA-Interim archive of the European Centre for
Medium-Range Weather Forecasts (ECMWF) is available at
https://apps.ecmwf.int/datasets/. ERA-Interim is a global atmo-
spheric reanalysis starting from 1979 and is regularly updated.
In the present work, we used the zero o’clock daily near-
surface (1,000 hPa) temperature, downloaded with a spatial
(zonal and meridional) resolution of 2.5◦× 2.5◦. Data for
years from 1979 to 2017 were downloaded on 4 October
2018, and data for the last year, 2018, were updated on 29
January 2019.

The ERA5 (https://climate.copernicus.eu/climate-reanalysis)
is a climate reanalysis dataset developed through the Coperni-
cus Climate Change Service (C3S). It is currently available for
the period since 1979 within 3 mo of real time. The analysis field
of ERA5 has a higher spatial resolution of 31 km and a higher
temporal resolution of 1 h, compared to ERA-Interim. Data
used in the present work is the zero o’clock daily near-surface
(1,000 hPa) temperature, downloaded on 25 January 2019, and
SST downloaded on 30 January 2019, with a spatial (zonal and
meridional) resolution of 2.5◦× 2.5◦.

The JRA55-do (https://esgf-node.llnl.gov/search/input4mips/)
extends from 1958 to 2018 and is expected to be updated annually
(around April each year). The SST field has a spatial resolution
of 1◦× 1◦ and a temporal resolution of 1 d. Data used in the
present work are the daily mean SST, downloaded on 8 Novem-
ber 2018, with a spatial (zonal and meridional) resolution of
1◦× 1◦.

Data Preprocessing. For each calendar year y since 1984 (the
first 5 y from 1979 to 1983 of the datasets ERA-Interim, ERA5,
and ERA5 SST are used to calculate the first anomaly value for
1984), at each grid point α in the Niño 3.4 region we calculate the
anomalies by substracting the climatological average from the
actual temperature and then dividing by the climatological SD.
We do this for each calendar day t . For simplicity, leap days were
excluded. The calculations of the climatological average and SD
are based only on the past data up to the year y .

SysSampEn for an Arbitrary Complex System. We first define the
SysSampEn for an arbitrary system. Let us assume we have N
interdependent time series xα(t) (α= 1, 2, . . . ,N ) of length l
composing the system.

1) From each time series, we select subrecords k of length
m < l , starting at each q-th data point, that is, starting at
t = k × q + 1 = 0× q + 1, 1× q + 1, 2× q + 1, . . ., as long as
k × q +m <= l . Thus a specific subsequence is X k

α(m, q) =
{xα(k × q + 1), xα(k × q + 2), . . . , xα(k × q +m)}. Then we
select n subsequences from each time series and construct
a set of N ×n template vectors from the system, that
is, Θ(m, q ,n) = {X k

α(m, q) : 0≤ k ≤n − 1, 1≤α≤N }. We
assume that 2 vectors are close (similar) if their Euclidean dis-
tance d(X i

α(m, q),X j
β(m, q))<γ×max{σα,σβ} (if α=β,

then i 6= j ), where σα and σβ are the SDs of time series xα(t)
and xβ(t), respectively. γ defines the similarity criterion and
is a nonzero constant.

2) To examine the probability that 2 time series which are close
at m data points still will be close at the next p data points, we
construct analogously another set Θ(m + p, q ,n) by selecting
subrecords of length m + p. To make the number of template
vectors of length m equal to that of length m + p, we choose
n ≤ l−m−p

q
+ 1. In order to reduce the parameter degrees

of freedom and save calculation time, we take p = q , then
n ≤ l−m

p
. We assume that 2 template vectors from the set

Θ(m + p, q ,n) are close if d(X i
α(m + p, q),X j

β(m + p, q))<

γ×max{σα,σβ} (if α=β, then i 6= j ).
3) The SysSampEn of the system is defined as SysSampEn(m,

p, leff (n), γ) =−log(A
B

), where A is the number of close vec-
tor pairs from the set Θ(m + p, q ,n), B is the number of close
vector pairs from the set Θ(m, q ,n) and leff (n) =n∗p +m is
the number of days since 1 January of each calendar year,
used in the calculation of SysSampEn.

Parameter Determination for the SysSampEn. Here we demon-
strate how to determine the SysSampEn(m, p, leff , γ) parame-
ters for our Niño 3.4 climate system by using the ERA-Interim
data. For each calendar year, we define a system composed of
N = 22 (red circles in Fig. 1) temperature anomalies time series
Tα(t) (1≤α≤N ) of length l = 365 d.

1) We choose the vector lengths m to be 30 d or 60 d, and
the length increases p to be 15 d or 30 d. We focus on
a (bi)monthly timescale since El Niño is an interannual
phenomenon.

2) The purpose of the SysSampEn is to quantify the spatial and
temporal disorder of a given system. This entails that if we
have a spatially and temporally correlated complex system,
represented by time series, and add random terms (e.g., white
noise) to each time series, then the SysSampEn of the new
system should be, with high probability, larger than the orig-
inal SysSampEn. Similarly, if we replace the times series in a
spatially highly correlated system with unrelated time series,
the SysSampEn should increase. We use these properties as
the basis of 2 tests to determine, for given m and p, the values
of leff and γ, which enable a reliable discrimination between
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more and less ordered systems. For simplicity, we assume γ to
be an integer.
a) Spatial asynchrony test: For a randomly selected year, we

choose randomly 3 neighboring points on the globe Tβ ,
Tβ+1, and Tβ+2. To construct a highly coupled system,
we randomly choose N = 22 times 1 of these 3 nodes.
Thus we obtain a system G1 with 22 nodes, where Tβ ,
Tβ+1, and Tβ+2 might be present in the system with dif-
ferent frequencies. To contrast, we choose randomly 22
unrelated nodes from the globe to create a system G2.
We perform this procedure M times. The accuracy is
defined as

accuracy =
1

M

M∑
i=1

Si , [2]

where

Si=

{
1, for SysSampEnG2 >SysSampEnG1 ;

0, forotherwise.
[3]

In the present study, we used M = 100. The accuracy is
shown as a function of leff and γ for m = 60, p = 15 in SI
Appendix, Fig. S3A.

b) Temporal disorder test: We compare the SysSampEn of
an undisturbed climate system G1, here our Niño 3.4 sys-
tem, with a new system G2, where random numbers have
been added to the original time series. The new system is
composed of N = 22 time series T̃α(t) =Tα(t) +Rα(t).
The Rα(t) are uncorrelated sequences of independent and
uniform random numbers in the range [−0.5∗σ, 0.5∗σ].
Here, σ is the average of the N = 22 individual time series’
SDs between 1 January 1984 and 31 December 2018. We
perform this procedure M times. The accuracy is defined
as in Eq. 2 and is shown as a function of leff and γ for
m = 60, q = 15 in SI Appendix, Fig. S3B.

Forecasting Algorithm for El Niño Onsets. We forecast the onset
of an El Niño event in the following year if the forecast-
ing index (average forecast over the 4 datasets) is ≥ 0.5◦ C
and the observed ONI in December is below 0.5◦ C. Oth-
erwise, we forecast the absence of an El Niño onset. The
forecasting index is shown in Fig. 3A as the heights of
rectangles.

Note that the forecasting index used in the present work is
calculated based on the significant linear relationship between
SysSampEn and the magnitudes of El Niño events that occurred
in the period 1984 to 2017. To forecast the occurrence or
absence of El Niño onsets after 2018, one should keep updat-
ing the forecasting index once a new El Niño has terminated,
by choosing the function of the SysSampEn which gives the
highest correlation r with the magnitudes of all terminated El
Niño events.

Forecasting Algorithm for El Niño Magnitudes. To forecast the
magnitude of an El Niño event starting in the year y ,

1) For one dataset, we determine the parameters of SysSampEn
by using the ones that give the highest correlation r with the
magnitudes of the El Niño events that occurred before the
forecasted event y . We regard only parameter combinations
which can provide a high accuracy level.

2) For one dataset, we calculate the best fitting line Y = a*X +
b between the El Niño magnitude and the previous calendar
year’s SysSampEn, by using least-squares regression. Here Y
stands for the magnitudes of the El Niño events, and X stands
for the corresponding previous year’s SysSampEn. Only past
events of the forecasted event y are used in the calculation of
the best-fitting line.

3) We calculate the SysSampEn in the year y − 1 and substitute
it into the function of the best-fitting line. Then we obtain the
expected magnitude of El Niño event starting in the calendar
year y .

4) Repeat steps 1 and 2 for the other datasets. The fore-
casted magnitude (blue dots in Fig. 3C) is obtained by taking
the average of the 4 expected magnitudes (+ symbols in
Fig. 3C).

5) To determine the error bar of our forecasting, we perform the
following leave-one-out hindcasts for each of the past events
of the forecasted El Niño event y :
a) The same as 1.
b) To obtain the leave-one-out hindcasted magnitude of each

past event ȳ < y , we use all events that occurred before y
except for the hindcasted one to calculate the best-fitting
line.

c) We calculate the SysSampEn in the year ȳ − 1, and sub-
stitute it into the function of the best-fitting line. Then
we obtain the expected magnitude of the El Niño event
starting in the calendar year ȳ .

d) Repeat steps 1 and 2 for the other datasets. The leave-
one-out hindcasted (orange dots in Fig. 3B) is obtained
by taking the average of the 4 expected magnitudes
(+ symbols in Fig. 3A).

To forecast the magnitude of the 2018 El Niño event, we sub-
stitute for each dataset the SysSampEn value for the year 2017
into the corresponding best fitting linear function, which is deter-
mined by all of the past El Niño events (except for the 2009
event). Thus we have 4 individual forecasts, which we average
to obtain our final forecast.

Data Availability.
The data/reanalysis that support the findings of this study are
publicly available online: ERA-Interim (49), https://apps.ecmwf.
int/datasets/; ERA5 (50), https://climate.copernicus.eu/climate-
reanalysis; and JRA55-do (51), https://esgf-node.llnl.gov/search/
input4mips/.
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